Blog of All Trades

Bewildering botany, free software fanaticism, reliable book reviews, 'mazing math

December 6, 2020

Learn How to Read Sanskrit (with Mnemonics & Examples)

Here's the Script

Just as the English language has a script to write in, the Latin/Roman alphabet, the language Sanskrit has a script to write in, the Devanagari abugida. In order to correctly speak or meditate on a Sanskrit mantra, knowledge of how to read the Devanagari is needed. Many gurus consider the proper pronunciation of a mantra essential to experiencing the energy inherent in the mantra [1]. Or if you are learning to read Sanskrit you must also learn the Devanagari abugida, just as to understand a book written in English, you must learn your ABCs.

Despite how strange and foreign 'abugida' sounds, reading an abugida is easier than an alphabet. An abugida is a script or writing system where each unit is based on a consonant-vowel sequence, while an alphabet is a script where each unit can represent many possible sounds, with the sound based on the particular word. For example, in our Roman alphabet, thorough and tough have the same letter t but create different sounds. In an abugida there is no ambiguity; one sign = the same sound every time.

To help us learn the pronunciation, the sounds of Devanagari writing can be transliterated or rewritten in the International Alphabet of Sanskrit Transliteration. Despite being called an alphabet, the IAST was designed to leave no ambiguity in its pronunciation; each IAST letter corresponds to a one sound and one sound only. For instance, the IAST transliterates अशोक (Aśokaḥ, Ashoka) into Aśokaḥ and mūṣaka into मूषक (mūṣaka, mouse).

Independent Vowels

Chart of independent vowels in Devanagari

Vowels are sounds that are produced with little constriction in the vocal tract. Most vowels consist of only one sound and are called monophthongs while a few vowels contain two successive sounds and are called diphthongs. An English example of a diphthong would be the y in cry where the a as in cola morphs into ī as in bee. Monophthongs are classified into short vowels and long vowels based on their length and come in pairs; however, the pairings are meaningless. Each vowel in a short-long pair is a different sound.

Devanagari has an independent and dependent sign for each vowel. The independent signs come first in the chart and their dependent partner is in parentheses. The independent sign of a vowel is used when the vowel starts a word like in आत्मन् (ātman, soul) and इति (iti, why).

Despite short-long pairings being useless for pronunciation, they can help us memorize the signs because the pairs of short and long signs follow a pattern: The sign for a long vowel is the sign for the corresponding short value plus an extra bit. For instance ऊ, the sign for long u or ū, is the just उ, the sign for short u or u, plus a half loop smacked on the end of it. This mnemonic doesn't hold for the last four independent vowel signs, so they'll have to be memorized individually. To cut down your study time, don't bother memorizing ॠ (ṝ), ऌ (ḷ), and ॡ (ḹ), since they're rarely used.

Consonants

Chart of consonants in Devanagari

In contrast to vowels, consonants are produced with constriction in the vocal tract. Most of the consonants in Sanskrit are stops, meaning we stop and then release the flow of air to produce them. Velar stops stop the flow of air in the back of our throat (the velum), palatal stops at the far back of the palate, retroflex stops at the back of the palate with the tongue curled back, dental stops at our teeth with our tongue touching our teeth, and the labial stops at our lips with our lips pressed together. English doesn't have retroflex stops but we can speak them by sounding their equivalent dental stop further back, with our tongue curled back and touching our palate. Retroflex stops sounds like an Indian accent because Indians mistake English stops that are between retroflex and dental for their native retroflex [2].

Stops are also divided based on whether they are voiced and/or aspirated. The vocal cords vibrate in voiced stops like द (d) but rest in unvoiced stops like त (t) . Aspirated stops are spoken with a puff of air while unaspirated stops are spoken without the puff. Aspiration is tricky because we don't make that distinction in English; if you say the p sports with or without aspiration no one will be confused. Even though aspiration doesn't impede our ability to understand English, we still speak some words with aspiration and some without. To get a feel for unaspirated and aspirated sounds, put your hand in front of your mouth and say spot, where the p is unaspirated, and pot, where the p is aspirated. The fifth column of the table contain the nasalized stops, stops produced with the same, ordinary points of articulation (dental, velar etc.) but with the passage to the nasal cavity open. This concept of "nasalization" will reappear when we learn about the anusvāra.

In addition to stops, there are semivowels which have so little constriction they are almost vowels, silibants where the tongue approaches the roof of the mouth to make a hissing sound, and a single, lonely h.

Consonant signs aren't like vowel signs, where different signs are used depending on if the vowel starts a word; consonant signs can be used anyplace in a word. Take a look at देशिक (deśika, spiritual teacher) which uses consonants द (d), श (ś), and क (k).

Consonant, Meet Vowel

Chart of dependent vowels in Devanagari

If consonant signs are the house of Devanagari, dependent vowels signs are the decoration. Dependent vowel signs do not exist on their own, but combine with consonant signs to produce a consonant-vowel pair (in that order). To write rīti, one must combine र (r) and ी (ī) to get री (rī), combine त (t) and ि (i) to get ति (ti), and then stick them end-to-end to get रीति (rīti, manner). Similarly, to spell kumāra, one must combine क (k) with ु (u), म (m) with ा (ī), and unite them with र (ra); to form कुमार (kumāra, young man). But wait just a minute! The consonant र (ra) didn't combine with any dependent vowel sign to get that cute a attatched to it. This is a neat space-saving rule of Devanagari: because the vowel a is used so frequently, it is implied after consonants that aren't combined with any dependent sign. To opt out of this "default a", a consonant sign must have a virāma or downright stroke fixed to the bottom of the sign like at the end of क् (k), जलमुच् (jalamuc, cloud), and रहस् (rahas, mystery). As we will see, there are special rules for consonants that don't precede a vowel in the middle of a word, so the virāma is only used on vowelless consonants that end a word.

The only three exceptions to these rules are ह्र (hṛ), र्ु (ru), and र्ू (rū). The vowel signs are placed inside these consonant signs. I have a mnemonic to remember these special cases: Rubin and Rūbin got sent to hṛ.

Lucky for us the dependent vowels follow a pattern that makes memorization easier. For each pair of signs, the first sign has less lines (ृ), is pointing left (ु), or is on the left (ि) and the second sign has more lines (ॄ), is pointing right (ू), or is on the right (ी).

Consonant, Meet Consonant

Similar to how a consonant sign combines with the following vowel sign to make a single consonant-vowel sign, a consonant sign followed by another consonant sign combine to produce a conjunct consonant. Since consonant signs aren't made to fit together like consonant signs and vowel signs (vowel signs have a blank space for the consonant to go), creating a conjunct consonant is more complicated. Because no one wants to memorize 1296 (36 consonant signs * 36 consonant signs) different conjunct consonants, the formation of each conjunct consonant follow these rules below. We don't need to fret about memorizing all of the exceptions to these rules since by definition they are exceptions and so won't come up often. Even when one finds an exception, guesswork is usually enough to figure out the meaning of the conjunct consonant.

Conjunct Consonant Rules

Three and rarely four sign conjunct consonants exist. To make one, apply the usual rules to the signs, left to right. For examples: ज् (j) + ज् (j) + य (ya) = ज्ज् (jj) + य (ya) = ज्ज्य (jjya); त् (t) + प् (p) + ल (la) = त्प् (tp) + ल (la) = त्प्ल (tpla); र् (r) + ष् (ṣ) + व (va) = र्ष् (rṣ) + व (va) = र्ष्व (rṣva).

Consonant, Meet my Good Friends Visarga and Anusvāra

The visarga, ः (ḥ), is added to the end of a word and is spoken as a soft breath of h and the vowel preceding the visarga. For instance in बान्धवाः (bāndhavāḥ, friend) the last syllable would sound like a quiet ha since a short a came before the visarga.

When the anusvāra, ं (ṃ ṅ ñ ṇ n m m), is added to the end of a word it is spoken as ṃ. Ṃ is not the same sound as m; ṃ is a Sanskrit-specialty that is produced by simply closing the mouth and relaxing the tongue. This use of the anusvāra is seen in words like अस्माकं (asmākaṃ, our). When the anusvāra is in the middle of a word it is spoken as the corresponding nasal consonant of the consonant after the anusvāra. To find the "nasalized" version of a consonant, find the consonant in the consonant chart and look across the row to the column labeled nasals. A more intuitive way of nasalizing a consonant is to try for one of the nasals sounds (ṃ, ṅ, ñ, ṇ, n, m, or m) in whatever tounge position you would use for the consonant. Since the bottom two rows of semivowels, silibants, and h have no corresponding nasal consonant the anusvā takes the meaning of ṃ, like it does at the end of words. To illustrate, in संस्कृत (saṃskṛta, Sanskrit), the consonant after the anusvāra is स् (s). Because स् (s) is a silibant, the anusvāra is pronounced as an ṃ. However in संजय (sañjaya) the anusāra comes before the consonant j. As j nasalized is ñ (see the consonant table if you're confused), the anusvāra is spoken as an ñ.

To Summarize...

Examples from Stories & Buddhist Mantras

For more practice, check out the Rig Veda or the Gaayatrii Mantra.

To check your transliteration on an unknown text, use Ashtanga Yoga's great computer transliterator

[1] "Some people affirm that it is not important to pronounce Sanskrit perfectly when reciting or chanting sacred texts ... [however] when one pronounces Sanskrit perfectly in chanting, the effect is immediate and inexorable" https://www.sanskrit-trikashaivism.com/en/learning-sanskrit-sacred-mantra-s-2/469

[2] https://www.economist.com/johnson/2013/02/05/the-humble-retroflex

October 25, 2020

Want Scientific Articles? Just Use SciHub!

Elbakyan, creator of scihub

Online scientific articles are an extremely useful source of knowledge in botany or any other field. They are indispensable for getting to the bottom of obscure or precise questions; some findings are just not written about in other media [1]. In addition, looking over the methodology and conclusion sections of experimental papers gives a better picture of the validity and applicability of the experiment's results. It's easy to forget botany doesn't consist of indisputable facts that everyone but idiots are in consensus with, but consists of competing and often controversial explanations with experimental results giving credence to many sides [2]. The media frequently misrepresents the soundness and meaning of findings so hearing it from the horse's mouth is the only option.

Despite the usefulness of digital scientific articles, three-quarters of them are locked behind expensive fees or unaffordable scientific journal subscriptions. If you ever click on an article and only have access to the abstract or summary of the paper, you've hit a paywall. You could be forgiven for thinking these fees are a necessary evil that provides scientific institutions with the money needed for research. This is not the case. The money from these paywalls go to "scientific journals", businesses that collect papers from researchers, have other researchers review them, and make a killing selling them back to other researchers and other interested people [3]. Journals do serve the purpose of vetting papers and giving credibility to the "good researchers" that get published but are they worth the cost? In the face of massive journal prices, some journals have gone "open access" where they find voluntary funding from universities or charge a fee to researchers who submit a paper. They still occupy a small share of the market and may never take over as the dominant form of publishing articles.

SciHub is a radical solution to the current system of scientific knowledge being behind high-priced tolls. SciHub was a pet project started by the ideal-driven Kazakhstani scientist Alexandra Elbakyan. She keeps a database of almost 50 million scientific articles that she serves for free on her site without regard to copyright. She uses controversial means to obtain the articles: accepting donated journal logins, buying university logins, and possibly buying stolen logins [4]. It's no surprise that the journals are trying to take down SciHub, a threat to their business and proof a donation-run host for science works. The American Chemical Society succeeded in getting a US court to authorize forced blocking of SciHub by ISPs, search engines, hosting providers, domain name registrars [5]. Elbakyan has managed to keep SciHub alive against the backlash from journals by switching hosting from CloudFlare and getting new domain names when one gets blocked.

As of October 25, 2020, SciHub is accessible from sci-hub.do, sci-hub.ren, sci-hub.se, sci-hub.st, sci-hub.es.ht, and scihub.wikicn.top. LibGen, a site similar to SciHub that includes academic books, is available at [libgen.rs](http://libgen.rs/). Downloading books differs from downloading scientific articles in some of the money paid for the book actually supports the author,so this may be a different ethical issue for you. Accessing these sites may or may not be illegal in your country but prosecution for users seems to be very rare. Accessing and downloading papers through [the Tor Browser Bundle](https://www.torproject.org/download/) encrypts your web traffic's destination and prevents your ISP from seeing your activity and snitching on you [6].

Scientific articles are an essential source for learning about plants. Reading from other sources can only take you so far and can give a skewed or incorrect view of what we know. With the academic system setup so most scientific research requires payment to large publishers that provide little benefit, SciHub offers a way out. SciHub pushes us closer to a world where science is more open to everyone, regardless of how much money they have or whether they are in the academic system. Do you want to learn about something? Just use SciHub!

[1] The only way I got to the bottom of the evolution of sassafras leaves was with several scientific articles.

[2] The entire field of phylogenetics

[3] One of the "big five" scientific journals, Elsevier, posted a 36% profit margin in 2010. if that isn't a killing, than what is? source: https://www.theguardian.com/science/2017/jun/27/profitable-business-scientific-publishing-bad-for-science

[4] http://fossilsandshit.com/what-is-the-public-evidence-surrounding-the-latest-sci-hub-allegations/

[5] The fact the court gave the ACS the power to order these "internet intermediaries" to censor SciHub is frightening for free speech on the internet. luckily, the order doesn't seem to be enforced on search engines, ISPs, and some domain name registrars since I can still find SciHub with google and access it through Verizon. https://www.eff.org/deeplinks/2017/11/another-court-overreaches-site-blocking-order-targeting-sci-hub

[6] You could also use a VPN to safely access SciHub; However, Tor is free.